58^a Reunião Anual da SBPC&T: Semeando Interdisciplinaridade

Plano da Apresentação

- Caracterização da Turbulência
- Caso 1.
 - Um caso real: ruas de Von Karman
 - A ponte sobre o rio Tacoma
 - Anemometria térmica
- Caso 2.
 - Escoamentos sobre elevações
 - Anemometria laser Doppler
 - CFD
- Caso 3.
 - Escoamentos em micro-canais
 - CFD
 - Experimentos básicos
- Palavras finais

Turbulência

Escoamento no bordo de ataque de uma placa plana

Camada Limite Turbulenta

Turbulência: Vários exemplos.

Caos

O paradoxo de d'Alembert

Caso 1. Um caso real:

Ruas de Von Karman. (A ponte sobre o rio Tacoma)

Um caso real:

ruas de Von Karman (A ponte de Tacoma)

Um caso real:

ruas de Von Karman (A ponte de Tacoma)

Túnel de vento

2,3

(a)

(b)

33

Anemometria térmica

Anemometria Térmica

Caso 1. Um caso real:

ruas de Von Karman (A ponte sobre o rio Tacoma)

ruas de Von Karman (A ponte sobre o rio Tacoma)

ruas de Von Karman (A ponte sobre o rio Tacoma)

Anemômetros de Fio-quente

- Comprados no exterior (2 fabricantes mundiais)
 - US\$ 12,000.00 (por canal de medição)
 - Dependência tecnológica
 - Dificuldades de aperfeiçoamento e manutenção
- Construídos no Brasil
 - Aproximadamente R\$ 1.100,00
 - Domínio tecnológico
 - Possibilidades de aperfeiçoamento e customização

Oportunidades

• Aplicações para a anemometria térmica

- Engenharias aeronáutica e civil
 - Ensaios em túnel de vento
 - Desenvolvimento de aerofólios
 - Aeroelasticidade
- Meio Ambiente
 - Efeito estufa (floresta amazônica)
 - Previsões atmosféricas
- Engenharia Offshore
 - Platafromas
 - Dutos
 - Risers
- Etc, etc, etc ...

Riqueza em escalas, alto grau de mistura, caos no tempo e no espaço, a cascata de energia

Caso 2. Escoamento sobre elevações.

Escoamento da direita para a esquerda

Escoamento da direita para a esquerda

Escoamento da direita para a esquerda

Escoamento sobre elevações

Tanque d'água e modelo da colina

Anemometria laser Doppler

Main Flow

Promediação das ENS (EPNS)

Equações do Movimento

- u = U + u'
- Média temporal, média espacial, esperança matemática.

Estratégias de modelagem, viscosidade turbulenta, modelo kappa-epsilom, RSM

Modelos do Tensor de Reynolds

Os modelos dependem da determinação experimental de muitos parâmetros

Formulação de lei da parede

• Mellor (1966)

$$u^{+} = \xi_{p^{+}} + \frac{2}{\kappa} \left(\sqrt{1 + p^{+} z^{+}} - 1 \right) + \frac{1}{\kappa} \left(\frac{4z^{+}}{2 + p^{+} z^{+} + 2\sqrt{1 + p^{+} z^{+}}} \right)$$

• Nakayana & Koyama (1984)

$$u^{+} = \frac{2}{\kappa^{+}} \left[3(\varsigma - \varsigma_{s}) + \ln\left(\frac{\varsigma_{s} + 1}{\varsigma_{s} - 1}\frac{\varsigma - 1}{\varsigma + 1}\right) \right]$$

• Cruz and Silva Freire (1998, 2002)

$$u = \frac{\tau_{w}}{|\tau_{w}|} \frac{2}{\kappa} \sqrt{\frac{\tau_{w}}{\rho} + \frac{1}{\rho}} \frac{dP_{w}}{dx} z} + \frac{\tau_{w}}{|\tau_{w}|} \frac{u_{\tau}}{\kappa} \ln\left(\frac{z}{L_{c}}\right) \qquad L_{c} = \frac{\sqrt{\left(\frac{\tau_{w}}{\rho}\right)^{2} + 2\frac{\nu}{\rho}} \frac{dP_{w}}{dx}}{\frac{1}{\rho} \frac{dP_{w}}{dx}} u_{R} - \frac{\tau_{w}}{\rho}}{\frac{1}{\rho} \frac{dP_{w}}{dx}}$$

Configuração do Cluster

- Administrador:
 - Intel D875PBZ Motherboard (With on-board Gigabit Ethernet network interface)
 - Pentium 4, 3.0Gz, 1Mb Cache
 - 1 Gb DDR400 in dual mode (2 x 512 Mb)
 - 200 GB SATA HD
- Nós (4):
 - Intel D875PBZ Motherboard (With on-board Gigabit Ethernet network interface)
 - Pentium 4, 3.0Gz, 1Mb Cache
 - 1 Gb DDR400 in dual mode (2 x 512 Mb)
 - 40 GB ATA HD
- 3COM Gigabit Ethernet Switch 3C16478
- 2 "APC Back-UPS RS 1500" 1500 VA UPS

Comparação entre os experimentos e as simulações numéricas: região de separação

Experimentos: região de separação

Simulações numéricas: região de separação

Caso 3: Escoamento sobre superfícies rugosas. Aplicações em MEMS.

Motivação. MEMS.

- Transição precose.
 - Wu and Little (1983, Cryogenics, 23, 273-277), Rc = 350
 - Peng and Peterson (1996, IJHMT, 12, 2599-2608, Rc = 300
 - Mala and Li (1999, IJHFF, 20, 142-148), Rc = 300, 900 (D = 50 to 254 μm), fR > HP
 - Qu et al. (2000, IJHMT, 43, 353-364)
 - Guo and Li (2003, IJHMT, 46, 284-298), compressible flow, (D = 80 to 166 μ m).
 - Wu and Cheng (2003, IJHMT, 46, 2547-2556), Rc = 1500
- Predições convencionais.
 - Mala and Li (1999, IJHFF, 20, 142-148), Rc = 300, 900 (D = 254 μ m)
 - Qu and Mudawar (2002, IJHMT, 45, 2549-2565)
 - Judy et al. (2002, IJHMT, 45, 3477-3489), fR = HP
 - Sharp and Adrian (2004, Exp. Fluids, 36, 741-747), D = 50 to 247 μ m
 - Celata et al. (2004, ETFS, 28, 87-95), Rc = 1900, 2500 (D = 130), fR = HP (R < 600), fR > HP (R > 600), relative channel surface roughness = 2.65%
 - Li e Olsen (2006, IJHFF, 27, 123-134), Rc = 1718, 1885 (D = 200 a 640 μm).

Motivação. MEMS.

It is well known that the surface roughness does not affect the laminar flow in macrochannels. However, as size decreases, surface roughness becomes important. K/Dh varies from 10-3 to 10-5. Wu and Cheng 2003 IJHMT 46 2547-2556

Causes of deviation from conventional macroscale results: wall slip effects (gas flow), surface roughness, viscous dissipation. Koo and Kleinstreuer 2005 IJHMT 48 2625-2634

A common point in early studies is that researchers who found early laminar-trubulent transition concluded that the relative high surface roughness was one of the major reasons. Li and Olsen 2006 IJHFF 27 123-134

Detalhes da simulação

Determinação do comprimento rugoso efetivo

- Dica (Meteorology)
 - $K_0 = 1/10 \text{ K}$
 - K = 0.008 microns (Li and Olsen, 2006)
 - K = 0.003 microns (Wu and Cheng, 2003, #8)
 - K = 0.9 microns (Wu and Cheng, 2003, #10)
- Cálculo de K₀ a partir de Ks
 - $K_s = 1/0.033 K_0$
 - K_s = 0.024 microns (Li and Olsen, 2006)
 - K_s = 0.009 microns (Wu and Cheng, 2003, #8)
 - $K_s = 2.728$ microns (Wu and Cheng, 2003, #10)

Resultados. BSL-RSM. Geometria #5, Re 600.

Linhas de corrente

LInhas de contorno

Resultados. BSL-RSM. Geometria #8.

Resultados. BSL-RSM. Geometria #10.

Resultados. BSL-RSM. Li and Olsen 2006 IJHFF 27 123-134

Linhas de Contorno

Diferentes modelos de turbulência, diferentes comprimentos de rugosidade.

Modelo BSL-RSM, diferentes modelos de rugosidade.

Modelos RSM-w, diferentes comprimentos de rugosidade.

A importância dos escoamentos complexos

1. Todos os processos industriais que envolvam escoamento de fluidos

2. Processos geofísicos

3. Pesquisa fundamental.

Acknowledgements

APSF is grateful to the Brazilian National Research Council (CNPq) for the award of a research fellowship (Grant No 304919/2003-9). The work was financially supported by CNPq through Grant No 472215/2003-5 and by the Rio de Janeiro Research Foundation (FAPERJ) through Grants E-26/171.198/2003 and E-26/152.368/2002. JBRL benefited from a Research Scholarship from the Brazilian Ministry of Education through CAPES. JBRL is also grateful to Programme AI & an, European Union Programme of High Level Scholarships for Latin America, N^o E03M23761BR, for further financial support.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

