

Velocity Logarithmic Profiles for Flows over Steep Hills

Atila P. Silva Freire Mechanical Engineering Program Federal University of Rio de Janeiro

Plan of Presentation

- Characterization of turbulence
 - Examples, visualizations.
 - Historical perspective. Great achievements.
- Governing equations
 - RANS
 - Modelling strategies
 - Asymptotic structure of the boundary layer
 - Law of the wall formulations
- Experiments
 - Hot-wire results
 - Laser Doppler results
- Numerical simulations
 - Two-equation differential models
 - RSM
- Final remarks

Flow Phenomenon

Flow is from right to left

Flow is from right to left

Flow is from left to right

Turbulence

Leading edge flow

Boundary layer flow

Turbulence

Chaos

Paradox d'Alembert

Richness in scale, high mixing, caos in time and in space, the energy cascade

Historical Perspective to Turbulence

Boussinesq 1877-1890

Osbone Reynolds 1883-1898

Saint-Venant 1830-1845

Prandtl and Ackeret (1904-1930)

T. Von Karman (1933-1949)

G.I. Taylor 1917-1956

Cronology

•	1840	Barré de St. Venant: (∆P ~ AQ + BQ ²).	
•	1854	Hagen:	first vizualization studies.
•	1877	Boussinesq:	eddy viscosity.
•	1883	Reynolds:	Reynolds number.
•	1894	Reynolds:	decomposition of the flow properties into mean and fluctuating quantities.
•	1904	Prandtl:	boundary layer theory.
•	1916	Taylor:	mixing-length, law of the wall.
	1015-1035	Taylor – von K	ármán: statistic theories

i ayiui varman.

Cronology (continued)

•	1939	Millikan:	logarithmic law of the wall.
•	1941	Kolmogorov:	turbulence cascade, -5/3.
•	1942	Kolmogorov:	two-equation differential models.
•	1945	Chou:	Reynolds stress models (RSM).
•	1956	Clauser,Coles:	law of the wake.
•	1967	Kovasznay:	turbulent boundary layer asymptotic structure.
•	1969, 1972	Yajnik, Mellor:	turbulent boundary layer asymptotic structure. Matched asymptotic expensions method.
		Differential me	

• Presently Differential models, RSM, LES.

Averaging procedure

Equations of motion

- U = U + u
- Time average, space average, ensemble average.

Modelling strategies, eddy viscosity, $\kappa - \varepsilon$ model, RSM

I) Eddy viscosity hypothesis

$$-\overline{u_{i}'u_{j}'} = v_{t} \left(\frac{\partial \overline{u_{i}}}{\partial x_{j}} + \frac{\partial \overline{u_{j}}}{\partial x_{i}}\right) - \frac{2}{3}\kappa\delta_{ij}$$

fluctuating quantity, turbulent stresses

II) κ–ε model

$$\frac{\mu_{t}}{\rho} = v_{t} = C_{\mu} \frac{\kappa^{2}}{\varepsilon} \longrightarrow \frac{\partial(U_{i}\kappa)}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\frac{v_{i}}{\sigma_{k}} \frac{\partial \kappa}{\partial x_{i}} \right) - \overline{u_{i}u_{j}}S_{ij} - \varepsilon$$
 Turbulent Kinetic
$$\frac{\partial(U_{i}\kappa)}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\frac{v_{i}}{\sigma_{k}} \frac{\partial \varepsilon}{\partial x_{i}} \right) - \frac{\varepsilon}{\kappa} \left(C_{1}\overline{u_{i}u_{j}}S_{ij} + C_{2}\varepsilon \right)$$
 Dissipation Rate

c Energy

e by Mass Unit

Reynolds stress models

Model relies on many empirical constants

$$\sigma^* = 2$$
 $\alpha = \frac{\beta}{\beta'} - \frac{k^2}{\sigma(\beta')^{0.5}} = 5/9$ $\beta = 0.075$ $k = 0.41$

Two-layered asymptotic structure

Two-layered asymptotic structure

Changes due to flow separation

Structure near a separation point

Law of the wall Formulation

• Mellor (1966)

$$u^{+} = z^{+} + \frac{1}{2} p^{+} z^{+^{2}}$$
$$u^{+} = \xi_{p^{+}} + \frac{2}{\kappa} \left(\sqrt{1 + p^{+} z^{+}} - 1 \right) + \frac{1}{\kappa} \left(\frac{4z^{+}}{2 + p^{+} z^{+} + 2\sqrt{1 + p^{+} z^{+}}} \right)$$

• Nakayana & Koyama (1984)

$$u^{+} = u / u_{pv}$$

$$z^{+} = z u_{pv} / v$$

$$p^{+} = [(v / \rho)(dp / dx)] / u_{\tau}^{3}$$

$$u_{pv} = [(v / \rho)(dp / dx)]^{1/3}$$

$$\tau^{+} = 1 + p^{+} z^{+}$$

$$z^{+} = (\tau_{w} / \rho)^{1/2} z / \nu$$

$$\kappa^{+} (p^{+}) = \frac{0.419 + 0.539 p^{+}}{1 + p^{+}}$$

$$\varsigma_{s} (p^{+}) = (1 + 0.074 p^{+})^{1/2}$$

Law of the wall Formulation

• Cruz and Silva Freire (1998, 2002)

$$u = \frac{\tau_w}{\left|\tau_w\right|} \frac{2}{\kappa} \sqrt{\frac{\tau_w}{\rho} + \frac{1}{\rho}} \frac{dP_w}{dx} z} + \frac{\tau_w}{\left|\tau_w\right|} \frac{u_\tau}{\kappa} \ln\left(\frac{z}{L_c}\right)$$

$$L_{c} = \frac{\sqrt{\left(\frac{\tau_{w}}{\rho}\right)^{2} + 2\frac{\nu}{\rho}\frac{dP_{w}}{dx}u_{R}} - \frac{\tau_{w}}{\rho}}{\frac{1}{\rho}\frac{dP_{w}}{dx}}$$

$$u = -\frac{2}{\kappa}u_{\tau} - \frac{u_{\tau}}{\kappa}\ln\left(\frac{z}{L_{c}}\right) \qquad L_{c} = 2\left|\frac{\tau_{w}}{dP_{w}/dx}\right|$$

Wind Tunnel

Main Specifications

Hot-wire anemometry

Hot-wire anemometry

Hill Model

Results: Velocity profiles

Results: Temperature profiles

Water tank and hill model

Laser Doppler Anemometry

Laser Doppler Anemometry

Laser Doppler Anemometry

Measuring stations

Results. Upstream region

Results. Separation region

Results. Downstream region

0

-u'w'/U <u>a</u>^B

0.04

0.08

-0.04

Turbulent stress

Skin-friction results: Upstream region

Coef of determination, R-squared = 0.993176

Residual sum of squares = 2.47696E-006 Coef of determination, R-squared = 0.971336

Skin-friction: Consolidated results

Streamlines

Kinetic energy and mixing length

Numerical simulation Eddy Viscosity, κ - ϵ Model

RANS Equations $\frac{\partial \overline{u_i}}{\partial x_i} = 0$ $\frac{\partial \overline{u_i}}{\partial t} + u_i \frac{\partial \overline{u_j}}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\upsilon \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) - \frac{\partial}{\partial x_j} \left(\overline{u'_i u'_j} \right)$

I) Eddy viscosity hypothesis

$$-\overline{u_{i}'u_{j}'} = v_{t} \left(\frac{\partial \overline{u_{i}}}{\partial x_{j}} + \frac{\partial \overline{u_{j}}}{\partial x_{i}} \right) - \frac{2}{3} \kappa \delta_{ij}$$

fluctuating quantity, turbulent stresses

II) κ–ε model

$$\frac{\mu_{t}}{\rho} = v_{t} = C_{\mu} \frac{\kappa^{2}}{\varepsilon} \longrightarrow \frac{\partial(U_{i}\kappa)}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\frac{v_{i}}{\sigma_{k}} \frac{\partial \kappa}{\partial x_{i}} \right) - \overline{u_{i}u_{j}}S_{ij} - \varepsilon$$
 Turbulent Kinetic Energy
$$\frac{\partial(U_{i}\kappa)}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\frac{v_{i}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_{i}} \right) - \frac{\varepsilon}{\kappa} \left(c_{1}\overline{u_{i}u_{j}}S_{ij} + c_{2}\varepsilon \right)$$
 Dissipation Rate by Mass Unit

Numerical simulation, finite elements, 2D, incompressible flow, κ - ϵ model

Numerical simulation: Mean velocity

Numerical simulation: separation region

7.0

8.0

9.0

6.0

1.0

2.0

3.0

4.0

Eddy Viscosity vs RSM

RANS Equations

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial \overline{u_i}}{\partial t} + u_i \frac{\partial \overline{u_j}}{\partial x_i} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\upsilon \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) - \frac{\partial}{\partial x_j} \left(\overline{u'_i u'_j} \right)$$

I) Eddy viscosity hypothesis

$$-\overline{u_{i}'u_{j}'} = \frac{\overline{\tau_{ij}}}{\rho} = v_{t} \left(\frac{\partial \overline{u_{i}}}{\partial x_{j}} + \frac{\partial \overline{u_{j}}}{\partial x_{i}}\right) - \frac{2}{3} \kappa \delta_{ij}$$

fluctuating quantity, turbulent stresses

II) The Reynolds stress transport equation for ω based models

$$\frac{\partial \tau_{ij}}{\partial t} + \frac{\partial u_k \tau_{ij}}{\partial x_k} = P_{ij} + \frac{2}{3} \beta' \omega \kappa \delta_{ij} - P_{ij} + \frac{\partial}{\partial x_k} \left(\left(\upsilon + \frac{\upsilon_t}{\sigma^*} \right) \frac{\partial \tau_{ij}}{\partial x_k} \right)$$

Numerical simulation: eddy viscosity turbulence models

Standard k-11, model (Launder and Spalding 1974))

$$\mu_{t} = C_{\mu} \rho \, \frac{\kappa^{2}}{\varepsilon}$$

$$\frac{\partial (U_i \kappa)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{v_i}{\sigma_k} \frac{\partial \kappa}{\partial x_i} \right) - \overline{u_i u_j} S_{ij} - \varepsilon$$

$$\frac{\partial (U_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{v_i}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_i} \right) - \frac{\varepsilon}{\kappa} \left(C_1 \overline{u_i u_j} S_{ij} + C_2 \varepsilon \right)$$

k-+ model (Wilcox (1986))

$$\mu_t = \rho \, \frac{\kappa}{\omega}$$

$$\frac{\partial \kappa}{\partial t} + \frac{\partial \kappa}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\upsilon + \left(\frac{\upsilon_t}{\sigma_\kappa} \right) \right) \frac{\partial \kappa}{\partial x_i} \right] + P_k - \beta' \kappa \omega$$

$$\frac{\partial \omega}{\partial t} + \overline{u_i} \frac{\partial \omega}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\upsilon + \left(\frac{\upsilon_t}{\sigma_{\omega}} \right) \right) \frac{\partial \omega}{\partial x_i} \right] + \alpha \frac{\omega}{k} P_k - \beta \omega^2$$

$$P_{k} = -\overline{u_{i}^{\prime}u_{j}^{\prime}} \frac{\partial \overline{u_{j}}}{\partial x_{i}}$$

SST κ - ω Model

The Shear Stress Transport (SST) $\kappa-\omega$ Model, accounts for turbulent shear stress transport by considering

$$\upsilon_{\tau} = \frac{\alpha_{1}\kappa}{\max(\alpha_{1}\omega, SF_{2})}$$

where F_2 is a blending function, and S is an invariant measure of the strain rate.

The blending function F_2 is given by

$$F_{2} = tanh(arg \frac{2}{2})$$

$$arg_{2} = max(\frac{2\sqrt{k}}{\beta'\omega y}, \frac{500\nu}{y^{2}\omega})$$

BSL Reynolds Stress Model

k = 0.41

$$\frac{\partial \tau_{ij}}{\partial t} + \frac{\partial u_k \tau_{ij}}{\partial x_k} = P_{ij} + \frac{2}{3} \beta' \omega \kappa \delta_{ij} - P_{ij} + \frac{\partial}{\partial x_k} \left(\left(\upsilon + \frac{\upsilon_t}{\sigma^*} \right) \frac{\partial \tau_{ij}}{\partial x_k} \right)$$
$$\frac{\partial \omega}{\partial t} + \frac{\partial u_k \omega}{\partial x_k} = \alpha_3 \frac{\omega}{\kappa} P_\kappa - \beta_3 \omega^2 + \frac{\partial}{\partial x_k} \left(\left(\upsilon + \frac{\upsilon_t}{\sigma_{\omega 3}} \right) \frac{\partial \omega}{\partial x_k} \right) + (1 - F_1)^2 \frac{1}{\sigma_2 \omega} \frac{\partial \kappa}{\partial x_k} \frac{\partial \omega}{\partial x_k}$$
$$\sigma^* = 2 \qquad \alpha = \frac{\beta}{\beta'} - \frac{k^2}{\sigma(\beta')^{0.5}} = 5/9 \qquad \beta = 0.075 \qquad k = 0.$$

 $\beta = 0.075$

$$\phi_3=F\;\phi_1+(1{\text -}F)\;\phi_2$$

$$F = tanh(arg^{4})$$

$$CD_{\kappa\omega} = max \left(2\rho \frac{1}{\sigma_{\kappa-\varepsilon}\omega} \frac{\partial \kappa}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}, 10^{-10} \right) \qquad arg = min \left(max \left(\frac{\sqrt{k}}{\beta' \omega y}, \frac{500 \upsilon}{y^{2} \omega} \right), \frac{4\rho \kappa}{CD_{\kappa\omega} \sigma_{k-\varepsilon} y^{2}} \right)$$

Cluster Configuration

- Intel D875PBZ Motherboard (With on-board Gigabit Ethernet network interface)
- Pentium 4, 3.0Gz, 1Mb Cache
- 1 Gb DDR400 in dual mode (2 x 512 Mb)
- 200 GB SATA HD
- Nodes (4):
 - Intel D875PBZ Motherboard (With on-board Gigabit Ethernet network interface)
 - Pentium 4, 3.0Gz, 1Mb Cache
 - 1 Gb DDR400 in dual mode (2 x 512 Mb)
 - 40 GB ATA HD
- 3COM Gigabit Ethernet Switch 3C16478
- 2 "APC Back-UPS RS 1500" 1500 VA UPS

Simulation Details

- SST (Eddy Viscosity)
 - 400,000 Elements (Hexaedra)
 - Inlet speed of 0.0482 m/s
 - Smooth wall
 - Total run time 5:09:32
- BSL (Reynolds Average)
 - 350,000 Elements (Hexaedra)
 - Inlet speed of $_{0,0482} \left(\frac{z}{z}\right)^{0,142857}$ m/s
 - Smooth wall
 - Total run time 5:23:02
- SSG (Reynolds Average)
 - 350,000 Elements (Hexaedra)
 - Inlet speed of $_{0,0482} \left(\frac{z}{s}\right)^{0.142857}$ m/s
 - Smooth wall
 - Total run time 2:23:40

Longitudinal velocity profiles in the recirculation region, k-+ based SST model

Longitudinal velocity profiles in the recirculation region, BSL Reynolds stress model

Longitudinal turbulent velocity profiles in the recirculation region, BSL Reynolds stress model

Vertical turbulent velocity profiles in the recirculation region, BSL Reynolds stress model

Longitudinal velocity profiles in the recirculation region, SSG model.

Representative turbulence velocity profiles, SSG Model

Final Remarks

1. Present work has shown how different law of the wall formulations can be used to describe the flow over a step hill.

2. Validation of theory was provided by H-W and LDA measurements over a model hill.

3. Further numerical simulations of the problem were presented through two-equation differential models and RSM.

4. Future work will focus on 3d geometries and on the description of the temperature field.

Acknowledgements

APSF is grateful to the Brazilian National Research Council (CNPq) for the award of a research fellowship (Grant No 304919/2003-9). The work was financially supported by CNPq through Grant No 472215/2003-5 and by the Rio de Janeiro Research Foundation (FAPERJ) through Grants E-26/171.198/2003 and E-26/152.368/2002. JBRL benefited from a Research Scholarship from the Brazilian Ministry of Education through CAPES. JBRL is also grateful to Programme AI & an, European Union Programme of High Level Scholarships for Latin America, N^o E03M23761BR, for further financial support.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

